
Mathematical Statistics II

MAT 5191 Lecture Notes
University of Ottawa

Hanan Ather

Winter 2022

Contents

1 January 11, 2022 2
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 January 13, 2022 4
2.1 Neyman-Pearson Fundamental Lemma . . . . . . . . . . . . . . . . . . . . 4
2.2 Geometric Interpretation of Neyman-Pearson Lemma . . . . . . . . . . . . 5

3 January 18, 2022 5
3.1 Examples of Most Powerful tests . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 P-values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 January 20, 2022 6
4.1 UMP tests: distributions with monotone likelihood ratio . . . . . . . . . . 6

5 January 25, 2022 7

6 January 27, 2022 7
6.1 UMP tests for composite hypothesis . . . . . . . . . . . . . . . . . . . . . 7

7 Feb 1, 2022 8
7.1 Bayesian tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
7.2 Minimax tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1



1 January 11, 2022 MAT 5191, Hanan Ather

These are my notes for MAT 5191: Mathematical Statistics II. These notes are my
interpretation of the content covered in class. They are by no means comprehensive; my
primary aim was to distill and summarize the important topics discussed in each lecture.

§1 January 11, 2022

§1.1 Introduction

In this course we will cover important topics of Mathematical Statistics. This course
covers methods of hypothesis testing thoery and interval estimation in the context of
Parametric Statistics and Classical Non parametric Statistics.

In a typical statistical problem our objective is to get information about the distribution
P of a random variable X based on n independent observations X1, ..., Xn of X.

Definition 1.1 (Random Sample)

Random variable is a function defined as

X(S,P) → X

Where S is the sample space, and P is a probability measure. Random sample is
defined as direct product of

S × · · · × S → (X × · · · × X )︸ ︷︷ ︸
sample space

Sample space is just a set of all possible values of a random sample. In general for
simplicity we assume that (X × · · · × X ) = Rn.

A hypothesis is a statement regarding the parameter of the distribution or distribution
itself. The two complementary hypothesis in a hypothesis testing problem are called the
null hypothesis (H0) and alternative hypothesis (H1).

Example 1.2. We may consider testing the hypothesis of symmetry of a cdf F (x) about
zero:

H0 : F1(x) = F2(x), for all x ∈ R,

Based on two independent samples X1, .., Xn and Y1, ..., Ym from continuous distributions
with cdf’s F1 and F2, respectively.

Definition 1.3 (Hypothesis test)

A hypothesis test is a statement regarding the parameter of the distribution or
the distribution itself. A nonrandomized test function assigns to each value
x = (x1, ..., x1) of X = (X1, ..., X1) of the the following decisions:

ϕ(X) =

{
0 if x ∈ C

1 if x ∈ A,
(1.1)

i For which sample values the decision is made to accept H0 as true.

ii For which sample values H0 is rejected and H1 is accepted as true.
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The subset of the sample space for which H0 will be rejected is called the critical
region (or rejection region). The complement of the rejection region is called acceptance
region.

In hypothesis testing we can commit two types of errors: reject H0 when H0 is true
(type I error) or to accept H0 when H0 is actually false (type II error).

To minimize the probability of both type I and type II error we impose the following
asymmetry between both types of error: we select a small number α ∈ (0, 1), called level
of significance, and impose the condition that

P(type I error) = Pθ(X ∈ C) ≤ α, for all θ ∈ Θ0.

Subject to this condition, we minimize,

P(type II error) = Pθ(X ∈ A), for all θ ∈ Θ1,

or equivalently we maximize

1− P(type II error) = Pθ(X ∈ A), for all θ ∈ Θ1. (1.2)

The quantity,

sup
θ∈Θ0

P(X ∈ C)

is called the size of the test with critical region C. With this approach the decision maker
believes that the consequence of wrongly rejecting H0 is more severe than the decision
of wrongly accepting it, and therefore the size of the test is kept at a small level. The
probability in 1.2 is called the power of the test against the alternative.

Definition 1.4 (Power Function)

Considered as a function of θ for all θ ∈ Θ, the probability

β(θ) = Pθ(X ∈ C), θ ∈ Θ,

is called the power function of the test with critical region C.

We note that based on 1.3, for non-randomized test ϕ with critical region C, we have

βϕ(θ) = Pθ(X ∈ C) = 1 · Pθ(X ∈ C) + 0 · Pθ(X ∈ A) = Eθ[ϕ(X)]
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2 January 13, 2022 MAT 5191, Hanan Ather

Definition 1.5 (Confidence set)

Let X = (X1, ..., Xn) be a random sample from a distribution P ∈ P = {P θ : θ ∈
Θ ⊆ Rk}. A random set S(X) is said to constitute a confidence set for θ of level
(1− α) if

P θ(θ ∈ S(X)) ≥ 1− α, for all θ ∈ Θ

§2 January 13, 2022

§2.1 Neyman-Pearson Fundamental Lemma

• typically the test ϕ that maximizes power against a particular alternative depends
on the alternative.

• there is an important exception: when the alternative is simple, Θ = {θ1}, the
problem is completely specified by

max
ϕ

βϕ(θ) = max
ϕ

Eθ[ϕ(X)]

subject to the condition

Eθ[ϕ(X)] ≤ α for all θ ∈ Θ0

• this maximization problem reduces to the mathematical problem of maximixing an
integral (or sum) subject to some conditions. The solution to this problem is called
the most powerful (MP) test of level alpha

Definition 2.1 (Uniformly most powerful test)

A level α test which maximizes power among all tests of level α is said to be
uniformly most powerful (UMP) level α test. Thus, ϕ is UMP level α test if:

(i) sup
θ∈Θ0

βϕ(θ) = α

(ii) for any other test ϕ∗ which satisfies (i) has βϕ(θ) ≥ βϕ∗(θ) ∀θ ∈ Θ1

Theorem 2.2 (The Neyman-Pearson Fundamental Lemma) Let X = (X1, ..., Xn) be
a random sample from a probability distribution Pθ with pdf/pmf f(x; θ), θ ∈
Θ = {θ0, θ1}. Suppose that we are interested in testing two simple hypothesis
H0 : θ = θ0 vs. H1 : θ = θ1 at level α.

(a) For testing H0 versus H1 there exists a test ϕ and a constant k such that

Eθ0ϕ(X) = α (2.1)

and

ϕ(X) =

{
1 if f(x; θ1) > kf(x; θ0)

0 if f(x; θ1) < kf(x; θ0)
(2.2)

(b) If a test satisfies 2.1 and 2.2 for some k, then it is a UMP level α test.
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(c) If ϕ is the most powerful at level alpha for testing H0 versus H1, then for some
k it satisfies 2.2. It also satisfies 2.1 unless there exists a test of size < α with
power 1.

§2.2 Geometric Interpretation of Neyman-Pearson Lemma

If we consider the set

B =
{
(α, β) ∈ [0, 1]2 : there exists a test ϕ such that α = Eθ0 [ϕ(X)], β = Eθ1 [ϕ(X)]

}
It can be shown that the set B is:

(a) convex;

(b) contains the points (0, 1) and (1, 1)

(c) symmetric about the point (1/2, 1/2) in the sense that if (α, β) ∈ B then the point
(1− α, 1− β) also belongs to B

(d) closed.

§3 January 18, 2022

§3.1 Examples of Most Powerful tests

Example 3.1. Let X1, .., Xn be a random sample from normal N(µ, σ2) distribution, where
µ is unknown and σ2 is known. If we test

H0 : µ = 0 vs. H1 : µ = µ0

for some µ0 > 0. The likelihood ratio is equal to

f(x;µ0)

f(x; 0
=

exp( 1
−2σ2

∑n
i=1(xi − µ0)

2)

exp( 1
−2σ2

∑n
i=1 x

2
i )

From this and Theorem 2.2, the critical region
{
x : f(x;µ0)

f(x;0 > k
}

of the most powerful level

α test is equivalent to the region {x :
∑n

i=1 xi > k′}, where the constant k′ satisfies the level
α constraint,

PH0

(
n∑

i=1

Xi ≥ k′ = α

)
We note that under H0,

∑n
i=1 Xi ∼ N(0, nσ2),

PH0

(
N(0, 1) ≥ k′

σ
√
n

)
= α

or,

1− Φ

(
k′

σ
√
n

)
= α

or,
k′ = σ

√
nΦ−1(1− α).
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4 January 20, 2022 MAT 5191, Hanan Ather

Thus, for the observed value x = (x1, ..., xn) of X = (X1, ..., Xn), the MP level α test
rejects H0 in favour of H1 if

n∑
i=1

xi > σ
√
nΦ−1(1− α) ⇐⇒ x̄ >

σ√
n
Φ−1(1− α)

§3.2 P-values

Definition 3.2 (p-value)

A p-value p(X) is a test statistic satisfying 0 ≤ p(x) ≤ 1 for every sample point x.
The p-value or observed size is defined by

p = p(X) = inf{α ∈ (0, 1) : X ∈ Cα}

where Cα is the critical region of level α test.

Lemma 3.3

Let X = (X1, .., Xn) be a random sample of probability distribution Pθ, θ ∈ Θ.
Consider H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ

§4 January 20, 2022

§4.1 UMP tests: distributions with monotone likelihood ratio

• The cases that both null and alternative hypothesis are simple is mainly a theoretical
situation. In most practical applications hypothesis are composite.

• Suppose that X = (X1, ..., Xn) is a random sample from a probability distribution
P θ, where θ ∈ Θ ⊆ R, that is θ is a real-valued parameter and suppose we wish to
test

H0 : θ ≤ θ0 vs. H1 : θ > θ0,

where θ0 is a given number from the parameter space.

The MP test depends on the value of θ ∈ (θ0,∞) =: Θ1, and in general, is then not UMP.

Definition 4.1

A family of pdf’s/pmf’s {f(x; θ) : θ ∈ Θ ⊆ R} is said to be monotone likelihood
ratio (MLR) in the statistic T (X) if there exists a function T : Rn → R such that

whenever θ1, θ2Θ with θ1 < θ2,
f(x; θ2)

f(x; θ1)
is a nondecreasing function of T (X) on the

set {x ∈ Rn : f(x; θ1) > 0 or f(x; θ2) > 0}

Let X = (X1, ..., Xn) be a random sample from a probability distribution Pθ with
pdf/pmf f(x; θ), θ ∈ Θ ⊆ R, and let the family {f(x; θ) : θ ∈ Θ} have the MLR in T (X).

6



7

(1) For testing H0 : θ ≤ θ0 vs. H1 : θ > θ0, there exists a UMP test level of α, which is
given by

ϕ(x) =


1, if T (x) > k

γ, if T (x) = k

0 if T (x) < k,

(4.1)

where k and γ ∈ (0, 1) are determined by

Eθ0 [ϕ(X)] = α (4.2)

(2) The power function β(θ) = Eθ0 [ϕ(X)], of this test is strictly increasing for all points
θ for with 0 < β(θ) < 1.

(3) For all θ′ ∈ Θ, the test determined by 4.1 and 4.2 is UMP for testing H0 : θ ≤ θ′ vs.
H1 : θ > θ at level α = β(θ′).

(4) For any θ < θ0, the test determined by 4.1 and 4.2 minimizes β(θ)

By interchanging the inequalities we obtain a solution to the dual problem of testing
H0 : θ ≥ θ0 vs. H1 : θ < θ0 by the following level α test

ϕ(x) =


1, if T (x) < k

γ, if T (x) = k

0, if T (x) > k,

(4.3)

where k and γ are determined by

Eθ0ϕ(X) = α (4.4)

§5 January 25, 2022

§6 January 27, 2022

§6.1 UMP tests for composite hypothesis

Previous lecture we proved that UMP exists for testing the hypothesis

H0 : θ ≤ θ1 or θ ≥ θ2 vs. H1 : θ1 ≤ θ ≤ θ2 (6.1)

if the family of pdf/pmf belong to a certain exponential family with a strictly monotone
function Q(θ). We have also seen that no UMP exists for the hypothesis H0 : θ =
θ1 vs H1 : θ ̸= θ1. Similarly we run into the same problem if we interchange H0 and H1

in equation (5.1).
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7 Feb 1, 2022 MAT 5191, Hanan Ather

Definition 6.1 (Unbiased test)

Let X = (X1, ..., Xn) be a random sample from probability distribution with pdf/pmf
f(x; θ), θ ∈ Θ ∈ R, k ≥ 1. Then for testing

H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1

at level α a test ϕ based on X is said to be unbiased if

Eθϕ(X) ≤ α for all θ ∈ Θ0 and Eθϕ(X) ≥ α for all θ ∈ Θ1

In other words, a test is unbiased if the probability of type I error is at most α and
the power of the test is at least α.

Definition 6.2 (UMPU)

A test is uniformly most powerful unbiased (UMPU) if it is the UMP within
the class of all unbiased tests.

The next condition provides us with conditions for when UMPU exists.

Theorem 6.3 Let X = (X1, ..., Xn) be a random sample from probability distribution
with pdf/pmf f(x; θ), θ ∈ Θ ∈ R, k ≥ 1, where f(x; θ) is given by

f(x; θ) = c(θ)h(x)eQ(θ)t(x), x ∈ R, θ ∈ Θ

Then for testing,

H0 : θ1 ≤ θ ≤ θ2 vs. H1 : θ ≤ θ1 or θ ≥ θ2

at level α, there exists a UMPU test which is given by

ϕ(x) =


1 if T (x) ≤ c1 or T (x) ≥ c2

γ if T (x) = ci, i = 1, 2, c1 < c2

0 otherwise

§7 Feb 1, 2022

§7.1 Bayesian tests

The Bayesian approach assumes that θ is a realization of a random variable θ with prior
distribution π on Θ. The prior distribution reflects our opinion about the parameter θ.
Let ϕ be a test for testing H0 versus H1, where C is the critical region, and A is the
acceptence region.

ϕ(x) =

{
1 if x ∈ C

0 if x ∈ A
(7.1)

Consider the loss function
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L(θ, ϕ) =


0 if θ ∈ Θ0 and ϕ = 0 or θ ∈ Θ1 and ϕ = 1

L1 if θ ∈ Θ0 and ϕ = 1

L2 if θ ∈ Θ1 and ϕ = 0,

where L1 and L2 are some positive constants. The risk function or the expected loss
over all values of X is

R(θ, ϕ) = L(θ, 1)Pθ(X ∈ C) + L(θ, 0)Pθ(X ∈ A) (7.2)

A test ϕ for which equation (7.2) is minimized is desirable. Consider the test

H0 : θ = θ0 vs. H1 : θ = θ1

where Θ0 = {θ0} and Θ1 = {θ1}. Let α = Pθ(x ∈ C) (type I error). And β = Pθ1(x ∈ C).
Now we can express the risk function in (7.2) in the following form:

R(θ, ϕ) =

{
L1α, if θ = θ0(type I error)

L2(1− β), if θ = θ1(type II error)
(7.3)

For a prior distribution π on Θ,

p0 = π(θ = θ0), p1 = π(θ = θ1)

The the Bayes risk of ϕ with respect to prior π is defined by

Rπ(ϕ) = p0R(θ0, ϕ) + p1R(θ, ϕ)

where R(θ, ϕ) is given by (7.3). A test ϕ for which the Bayes risk is minimal is called
the Bayes test with respect to prior π. The following theorem is an analogue of the
Neyman-Pearson Lemma.

Theorem 7.1 Let X = (X1, ..., Xn) be a random sample from probability distribution
with pdf/pmf f(x; θ), θ ∈ Θ = {θ0, θ1} ⊆ Rk, k ≥ 1. Let π be a prior distribution on
Θ and let

p0 = π(θ = θ0), p1 = π(θ = θ1)

For testing H0 : θ = θ0 vs. H1 : θ = θ1, there exists a Bayes test ϕπ corresponding
to the prior π which minimizes the Bayes risk Rπ(ϕ). The test is given by

ϕπ(x) =

{
1, if f(x; θ1) >

p0L1

p1L1
f(x, θ0)

0, otherwise

As we can see in 7.1, the Bayes test ϕπ, is a likelihood ratio test and is the most powerful
test for testing H0 : θ = θ0 vs. H1 : θ = θ1 at level Pθ0(X ∈ C), where the‘ critical region
C is given by

C =

{
x ∈ Rn : f(x; θ1) >

p0L1

p1L1
f(x, θ0)

}
,

which follows from the Neyman-Pearson Lemma.

9
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§7.2 Minimax tests

SupposeX = (X1, ..., Xn) be a random sample from probability distribution with pdf/pmf
f(x; θ), θ ∈ Θ =⊆ Rk, k ≥ 1 and consider testing H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1. And let
L(θ, ϕ) be the same loss function as before,

L(θ, ϕ) =


0 if θ ∈ Θ0 and ϕ = 0 or θ ∈ Θ1 and ϕ = 1

L1 if θ ∈ Θ0 and ϕ = 1

L2 if θ ∈ Θ1 and ϕ = 0,

Consider the risk same risk function (7.2).

Definition 7.2 (Minimax test)

The test ϕ for testing H0 : θ = θ0 vs. H1 : θ = θ1 is called the minimax test if for
any other test ϕ∗ one has

max(R(θ0, ϕ), R(θ1, ϕ)) ≤ max(R(θ0, ϕ
∗), R(θ1, ϕ

∗))

We have the following result regarding the existence of minimax test,

Theorem 7.3 (Existence of Minimax test) Let X = (X1, ..., Xn) be a random sample
from probability distribution with pdf/pmf f(x; θ), θ ∈ Θ = {θ0, θ1} ⊆ Rk, k ≥ 1.
Consider testing H0 : θ = θ0 vs. H1 : θ = θ1 at level α. Define the subset C of the
sample space Rn as follows

C = {x ∈ Rn : f(x; θ1) > cf(x, θ0)}

and assume there is a determination of the constant c such that

R(θ0, ϕ) = R(θ1, ϕ) or equivalently, L1Pθ0(X ∈ C) = L2Pθ1(X ∈ A).

Then the test

ϕ(x)

{
1 if x in C

0 otherwise

is minimax test.
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